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Almost 400 years ago, Shakespeare portrayed adolescents as follows: 
“I would there were no age between ten and three-and-twenty, or that 
youth would sleep out the rest; for there is nothing in the between 
but getting wenches with child, wronging the ancientry, stealing, 
 fighting.” This quote, from The Winter’s Tale, depicts adolescents as 
making risky decisions, a characteristic that is associated with this age 
group today. Adolescence is defined as the period of life that starts 
with the biological changes of puberty and ends at the time at which 
the individual attains a stable, independent role in society1. During 
this period, decisions become increasingly independent of adults, 
and instead peers become more influential. Risky decisions made  
during adolescence can have serious consequences: the leading cause 
of death in adolescence is accidents, which are often the result of risky 
decisions, for example, dangerous driving and experimentation with 
alcohol and drugs2. It is thus important to understand the neuro-
cognitive processes that underlie decision-making in adolescence. 
Decision-making cognition depends on the interaction of several 
component processes, including the representation of value, response 
selection (including inhibitory control), learning and socio-emotional 
factors. We consider the development in adolescence of each of these 
processes, in the context of what has been established from studies 
of adult decision-making.

Impulsivity and inhibitory control
The heightened risk-taking and impulsivity observed in adoles-
cence has been partly attributed to the slow development of the 
brain regions necessary for cognitive control, subsuming response 
selection, top-down control and inhibitory processes, and includ-
ing prefrontal cortex (PFC). The human PFC undergoes particularly 
protracted structural development: the development of gray matter 
volume follows an inverted U-shaped trajectory, peaking in early  

adolescence3–5 and then declining slowly throughout adolescence and 
early adulthood6,7, possibly reflecting the decrease in synaptic density 
that occurs during this period of development8 (Fig. 1).

In adults, paradigms that involve inhibition of a prepotent response, 
such as ‘go/no-go’ and ‘stop-signal reaction time’ tasks (Fig. 2), engage 
frontal regions including the anterior cingulate cortex (ACC) and lat-
eral PFC9,10. Performance tends to improve between childhood and 
late adolescence on a variety of inhibitory control paradigms, including 
go/no-go, Stroop, stop-signal and antisaccade tasks11. In parallel, PFC 
activity during inhibitory control tasks changes during adolescence in a 
direction that seems to depend on the particular task used and the PFC 
subregion involved12,13. Early studies pointed to higher PFC activity 
during inhibitory paradigms such as the anti-saccade task in adoles-
cents relative to adults14. In contrast, a common finding from other 
impulse-control paradigms is developmental ‘frontalization’, that is, 
gradually increasing PFC activity during inhibition tasks between early 
adolescence and adulthood15,16. Some studies have reported a ‘diffuse 
to focal’ developmental pattern of PFC activity, that is, a decline in the 
extent of activated regions in control tasks across adolescence17. Thus, 
there are inconsistencies in the results from the developmental fMRI 
(functional magnetic resonance imaging) studies of impulse control. 
The development of PFC responses during impulse control tasks is 
evidently complex and seems to depend on the specific task being used 
and the specific region within the PFC involved in the task.

Intertemporal choice
In addition to the slow development of impulse control, adolescents 
also show a preference for decisions that provide an immediate 
reward. In a widely used scenario, a participant is given the choice 
between a small, immediate reward and a large, delayed one. This 
reward, for adult humans, could be money (for example, $10 now or 
$30 in a month); for human children, sweets (for example, one sweet 
now or two in 15 minutes); or for rodents, food, (for example, one 
food pellet now, or four in 60 seconds). In all cases, the probability of 
choice behavior for the larger reward is a hyperbolic function of its 
delay (‘temporal discounting of reward’18). There is also consistent 
individual variation in the propensity to discount value, with some 
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Adolescence is characterized by making risky decisions. Early lesion and neuroimaging studies in adults pointed to the 
ventromedial prefrontal cortex and related structures as having a key role in decision-making. More recent studies have 
fractionated decision-making processes into its various components, including the representation of value, response selection 
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decision-making in adolescence may be particularly modulated by emotion and social factors, for example, when adolescents are 
with peers or in other affective (‘hot’) contexts.
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individuals adopting the more ‘impulsive’ response styles of selecting 
the more immediate option. The classic study by Mischel illustrated 
the predictive power of such a paradigm in showing that discount-
ing tendencies of 4-year-old children predicted their future real-life 
behavior as adolescents19 as well as aspects of their brain activity 
in their mid-forties20. In adults, a ‘reward system’ (Fig. 3) includ-
ing the ventral striatum and ventromedial PFC (vmPFC) is activated 
by decisions involving immediately available monetary rewards21,22. 
As impulse control gradually improves in adolescence, the temporal 
discounting of monetary reward decreases between 6 and 17 years of 
age23. The age-dependent reduction in the tendency to make impul-
sive choices with immediate reward has been associated with a linear 
increase in activity in left vmPFC and a decrease in the ventral stria-
tum and other regions between 11 and 31 years of age24.

Human decision-making cannot always be explained by the 
rational principles of economic theory. This theory prescribes that 
choice behavior is determined by utility theory, which states that 
decisions are made rationally on the basis of selecting the high-
est objective expected value or expected subjective utility of the 
options available25,26. Instead, the context (or ‘frame’) and individual 
unconscious response biases counteract rational choices and lead to 
more complex models of decision-making processes27. Particularly 
important are emotional factors; hence the term ‘hot’ (high arousal, 
emotional) as distinct from ‘cold’ (low arousal, non-emotional)  

decision-making. Also, the value of response options’ outcomes 
appears to be computed along several dimensions: the magnitude 
and probability of the expected gain or loss (positive versus negative 
outcome) as well as the delay or expended effort between choosing an 
option and its consequences. Most of these dimensions of value are 
well represented in single unit activity of the adult primate prefrontal 
cortex and appear to converge on the ACC, which perhaps mediates 
response selection28.

In decisions involving risk, adult humans generally prefer to avoid 
losses than to acquire gains (‘loss aversion’29). This leads to a prefer-
ence for certain gains compared to uncertain, risky ones—for example, 
a certain gain of $5 rather than a 0.5 probability of winning $10 (‘risk 
aversion’). In contrast, adults generally prefer the risky option of an 
uncertain loss (for example, of $10 at a probability of 0.5) against a 
certain loss of $5, this asymmetry of heuristic biases produced by the 
positive and negative ‘frames’ predicted by the ‘prospect theory’30. An 
influential fMRI study showed that blood oxygenation level–dependent 
(BOLD) signal in the ventral striatum varied according to the framing of 
an outcome31, which is consistent with evidence from studies in rodents 
on the role of the ventral striatum in reward-related processes32–34.

Early appreciation of the role of emotional processes in decision-
making cognition came from the pioneering neuropsychological stud-
ies of decision-making on the Iowa Gambling Task (IGT) after damage 
to the vmPFC, which captured the catastrophic decision-making of 
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Figure 1 Synaptic development in the human brain. Graphs represent numbers of dendritic spines per 50-µm dendrite segment on basal dendrites after the 
first bifurcation (left); apical proximal oblique dendrites originating within 100 µm from the apical main shaft (center); and apical distal oblique dendrites 
originating within the second 100-µm segment from the apical main shaft (right) of layer IIIc (filled symbols) and layer V (open symbols) pyramidal cells in 
the dorsolateral prefrontal cortex. Squares represent males; circles represent females. The age in postnatal years is shown on a logarithmic scale. Puberty is 
marked by the shaded bar. B, birth (fourth postnatal day); P, puberty. Reproduced with permission from ref. 8.

Figure 2 Relationship between response inhibitory 
control and decision-making in humans with large 
frontal lesions. (a) Stop-signal task. Participants 
respond as quickly as possible to a visual 
discriminative ‘go stimulus’ (for example, respond 
left or respond right). On a proportion of trials a 
brief ‘stop signal’ (auditory or visual; ‘beep’) is 
presented that indicates the subject must not 
respond, that is, they should cancel the initiated 
action. The stop signal is offset with a variable 
delay after the go signal; a stop signal reaction time independent of the ‘go’ reaction time can be computed from the response time distributions. (b) Relationship 
between performance on the IGT (y axis) and stop-signal task (x axis) in patients with right lateral frontal damage. Left, performance  on the IGT, separating 
patients according to their performance on the stop signal reaction time task into ‘good’ and ‘poor’ stoppers in the stop-signal task. Right, net score collapsed 
over 100 trials for poor stoppers (<200 ms, n = 5), who exhibited relatively impaired performance on the IGT compared with the good stoppers (>300 ms, n = 7). 
Error bars, s.e.m. There was a significant difference between the two groups (F1,10 = 10.3, P = 0.009), driven by learning in the patients with right lateral PFC 
lesion versus no learning in poor stoppers. (Clark, L. & Robbins, T.W., previously unpublished analysis of data reported in refs. 48,95).
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patients with vmPFC lesions in everyday life35. The IGT requires par-
ticipants to choose among four packs of cards, each associated with 
different profiles of monetary gain and loss. Some packs are appar-
ently lucrative but eventually result in catastrophic loss. Other packs 
are ‘steady earners’, with small wins hardly ever being penalized by 
even smaller losses. Healthy adults tend to sample the risky packs 
initially but then tend to settle on the safer options. Patients with 
vmPFC damage tend to persist with the risky (and initially ambigu-
ous) packs35. The somatic-marker account of this deficit suggests that 
the patients with vmPFC damage cannot retrieve from memory the 
emotional consequences of their prior decisions, which is possibly 
mediated in part via the insular cortex36.

A number of studies have shown that although judgments about 
probability and value seem to be mature by mid-adolescence37,38, 
the use of this information to guide decisions in ‘hot’ contexts, char-
acterized by high emotion or arousal, is still developing39. In one 
study, adolescents (aged 13–19) and adults (aged 20 and over) played 
a card game in which cards could be turned over as long as gains were 
encountered, but as soon as participants received a loss, the trial ter-
minated40. Adolescents exhibited sub-optimal decision-making, not 
taking into account value and probability information when making 
decisions in a ‘hot’ but not a ‘cold’ version of the task. Similarly, a peak 
in reward sensitivity in mid/late adolescence (14–21 years) has been 
found on a modified version of the IGT41. Adolescents were worse 
than adults at avoiding the disadvantageous decks of cards, with a 
linear increase in ‘loss aversion’ with age. In contrast, the tendency to 
play increasingly from the advantageous decks followed an inverted U 
shape, peaking in mid/late adolescence. Thus, adolescents’ behavior 
seems to be biased toward potentially rewarding approach behavior, 
even when this behavior may have negative consequences.

Learning and prediction errors
Additional consideration of the complex cognitive requirements of the 
IGT emphasizes the importance of past experience (and hence learn-
ing) for decision-making, in particular the mismatch between expected 
and obtained outcomes. This mismatch is termed a ‘prediction error’ 
and is the basis of both Pavlovian and instrumental learning (reinforce-
ment theory). The discovery of neuronal correlates of prediction errors 

in terms of fast phasic firing of midbrain dopamine cells42 implicates 
dopamine in reinforcement learning and advances earlier notions that 
mesolimbic dopamine (innervating nucleus accumbens and amygdala) 
formed part of a reward system43. Aversive as well as appetitive predic-
tion errors may also contribute to decision-making and may depend 
on different neurochemical coding involving serotonin44.

The rigid decision-making of patients with vmPFC lesions may 
reflect a learning deficit. Impairments in reversal learning, such that 
responses do not adjust plastically to changing contingencies, occur 
after vmPFC lesions in humans45 and other animals46. As in the case 
of impulsive behavior, perseveration could also arise from a deficit in 
cognitive control. Indeed deficits in IGT performance in patients with 
large frontal lesions can be correlated with impairments in inhibitory 
control, as measured by performance on the stop-signal reaction time 
task47,48 (Fig. 2). In healthy adult volunteers, performance on an emo-
tional variant of the stop-signal reaction time task was also correlated 
with risky choices on the IGT49.

The decision-making deficit of patients with vmPFC lesions may 
also result from a conscious preference for risk50. It is difficult to isolate 
this element of decision-making on the IGT, but it is more feasible in 
another decision-making task, the Cambridge Gamble Task (CGT), 
which presents several decisions between options with different out-
come probabilities in a visual format that does not depend on learning51 
(Fig. 4). Participants are asked to gamble a proportion of their earned 
points on each decision. Patients with large orbitofrontal (including the 
vmPFC) lesions52 exhibit increased betting, indicative of enhanced risky 
behavior. This pattern was not caused simply by impulsive respond-
ing, through lapses in cognitive control53. The CGT involves making 
decisions under risk, whereas the IGT initially involves making deci-
sions where the probabilities of outcomes are unknown (ambiguity). 
Risky versus ambiguous decisions may implicate different circuits that 
include the posterior parietal cortex versus lateral orbitofrontal cortex 
(OFC), respectively54,55, although both types of decision also activate 
the reward system equivalently56. The involvement of parietal cortex 
in risky decision-making is consistent with discoveries of single units 
in the lateral inferior parietal cortex, which modulate performance of 
tasks involving simple perceptual-to-motor transformations according 
to the probability and magnitude of a reward57.

Anterior 
insula

Rostral anterior cingulate/vmPFC

Ventral
striatum

Midbrain

Figure 3 Major components of the human reward brain circuitry.  
The ventral striatum (including the nucleus accumbens and the ventral 
putamen) and the rostral anterior cingulate/vmPFC, derived from an 
fMRI study of human volunteers using a simulated slot machine96. 
Transverse section shows BOLD activation for the overall reward (small 
monetary wins) minus neutral outcome (non-wins) contrast, thresholded 
at P < 0.05 corrected for multiple comparisons. Also depicted (right) in 
sagittal section is a midbrain activation, which is presumed to contribute 
ascending dopamine neurons from the ventral tegmental area to the ventral 
striatum and vmPFC and from the substantia nigra to the dorsal striatum. 
Reproduced with permission from L. Clark.
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Figure 4 Performance on the CGT. A screen shot of the CGT (right). Patients 
decide which box to select to find a reward token, on the basis of explicitly 
defined risk probabilities. They are allowed to gamble a proportion of their 
earned points on this decision, which they will gain if correct and lose from 
their accumulated ‘pot’, if incorrect. The bets are presented in both ascending 
and descending orders, controlling for motor impulsivity53. Plotted are average 
bets across groups: patients with vmPFC lesions (n = 20), by comparison to 
healthy controls (n = 41) and to controls with primarily dorsal PFC damage 
(n = 12), showed significantly elevated betting collapsed over odds ratios, 
irrespective of tendencies to impulsive behavior. (*P < 0.01, one-way ANOVA). 
Based on data first published in ref. 53. Error bars, s.e.m. Screen shot used 
with permission from Cambridge Cognition.

np
g

©
 2

01
2 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.



nature neuroscience	 VOLUME 15 | NUMBER 9 | SEPTEMBER 2012 1187

r e v i e w

Several developmental fMRI studies have demonstrated that, com-
pared with adults and children, adolescents exhibit different responses 
to reward in reward-processing regions such as the ventral stria-
tum58,59. Several recent studies of reward processing and prediction 
errors have reported nonlinear changes across adolescence, with a peak 
in activity in reward-processing regions in response to reward during 
mid-adolescence. In one study measuring neural responses to low- and 
high-risk gambles across development, regions associated with cogni-
tive control, including the dorsal ACC, exhibited a linear decrease in 
activity with age, whereas reward-related regions (ventral striatum 
and vmPFC) exhibited a peak in activity in adolescence60. In contrast, 
early studies indicated that the ventral striatum showed less activity  in  
adolescents than in adults during the anticipation of rewards61. 
However, this effect was not replicated in a recent study. It was found that 
in an anti-saccade task in which accurate performance on some trials  
was financially rewarded, performance on such reward trials was 
higher and that this effect was largest in adolescents62. In addition, 
knowing that the next trial would potentially result in reward was 
associated with increased activation in the ventral striatum in ado-
lescents, suggesting an exaggerated response in this region to the 
anticipation of rewards62. The inconsistencies in the literature might 
be attributable to the type of reward paradigm used; but what seems 
to emerge from these studies is that the ventral striatum is differ-
ently activated in adolescents and adults at different stages of reward 
processing. Heightened risk-taking and novelty-seeking in adoles-
cence is not specific to humans; it is also present in adolescent rats63,64. 
There is evidence that anticipation of reward and delivery of reward 
are processed differently in the striatum and other parts of the reward 
system in adolescent versus adult rats65.

When decision value and prediction error were dissociated in a 
learning paradigm in participants aged 8 to 30 years, the peak in 
reward sensitivity in adolescents was specifically associated with a 
peak in the dopaminergic prediction error signal (associated with 
unpredictable rewards) in the ventral striatum66. With training, all par-
ticipants became faster and more accurate at responding to predictable 
stimuli, but only the adolescent group (aged 14–19) responded more 
quickly to stimuli associated with a higher reward value compared 
with small rewards. In addition, compared with children and adults, 
the adolescent group exhibited higher ventral striatum responses 
to higher, unpredicted reward. This suggests that responsiveness to 
dopaminergic prediction error is higher in adolescents, which might 
contribute to elevated reward seeking in this age group.

Impact of emotion on decisions
Hypersensitivity of reward-processing regions in response to reward 
delivery, in tandem with the relatively slow development of impulse 
control–related regions, has been proposed to account for height-
ened risk-taking in adolescence, and this might especially be the case 
when decisions are made in an emotional context67. A nonlinear pat-
tern of ventral striatum activity was reported in a recent study that 
used an emotional variant of the go/no-go task. In this fMRI study,  
6–29-year-olds carried out a go/no-go paradigm with emotional cues 
(happy faces) and neutral cues (calm faces)68. The ability to resist neu-
tral no-go stimuli improved linearly with age in parallel with a linear 
increase in PFC activity. In contrast, adolescents exhibited a reduction 
(relative to children and adults) in the ability to resist emotional no-go 
stimuli. In other words, the ability to inhibit the prepotent response fol-
lowed a nonlinear developmental trajectory, with a dip in adolescence. 
In parallel, there was an inverted U-shaped trajectory of activity in the 
ventral striatum, which peaked in adolescence68 (Fig. 5).

Counterfactual emotions such as relief and regret have a role in 
decision-making. Regret arises from experience of an outcome that 
one could have chosen but did not. This emotion is important because 
decision-makers presumably anticipate the aversive emotion of regret 
based on past experience when making their choices. Regret differs 
from disappointment in that its experience depends on active (that is, 
instrumental) choices rather than passive (Pavlovian) contingencies. 
This is reflected in the neural network activated by regret in adult 
humans, which includes the putamen and the OFC69,70. The ability to 
think counterfactually about the outcomes of decisions may continue 
to develop during adolescence71. We investigated whether this was 
reflected in a developmental change in the use of counterfactually 
mediated emotions when making decisions72. In each trial, males aged 
9–35 chose between two gambles differing in expected value and risk 
as well as the potential to generate relief and regret69,70,72. The abil-
ity to maximize expected value increased linearly with age, whereas 
risk-seeking followed a quadratic relationship with age, and the pro-
portion of risky choices peaked in mid-adolescence. The strength of 
counterfactually mediated emotions increased between childhood  
and adolescence: on learning the outcome of each gambling decision, 
12–15-year-olds responded with stronger evaluations of relief (and, to 
a lesser extent, regret) than did 9–11-year-olds72. Thus, adolescents are 
more likely than children and adults to make risky decisions in emo-
tionally ‘hot’ contexts, for example, when they have to evaluate how a 
gambling outcome makes them feel. In contrast, in ‘cold’ tasks, with no 
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emotional evaluation or affective context, risk-taking is either similar 
in adolescents and adults or there is a reduction with age73,74.

Social influence on decision-making
Other challenges for rational economic theory come from analysis of 
social decision-making, typically assessed via behavior in economic 
games75. In the ultimatum game, for example, adults may refuse offers 
they consider unfair, even though they are disadvantaged financially 
as a consequence76. It appears that apes (for example, chimpanzees) 
behave ‘rationally’ and are insensitive to ‘fairness’, accepting all 
offers77. An early fMRI study of the ultimatum game showed that 
when responders were faced with unfair offers (from humans, as dis-
tinct from computers), there was activation bilaterally in the anterior 
insula, the ACC and the dorsolateral PFC78. Parallel difficulties for 
decision-making theories are posed by ‘moral dilemmas’, where again 
there is conflict between ‘utilitarian’ principles (for example, maxi-
mizing what is good for the majority) and emotional factors79.

Social context is a particularly salient influence on adolescent  
decision-making. Anecdotally, adolescents are especially prone to  
taking risks with peers, an obviously ‘hot’ context in which the poten-
tial reward is peer approval. Studies have used driving simulation 
games, which arguably have higher ecological validity than behavioral 
economics tasks, to evaluate driving risks taken when alone or with 
two peers. Adolescents (age 13–16), youths (age 18–22) and adults  
(age 24 and over) took around the same number of driving risks when 
alone, whereas the adolescents took almost three times that number 
in the presence of their friends. In contrast, peers had no impact on 
risk-taking in adults and had an intermediate effect on risk-taking 
in youths80. In an fMRI version of this task, in the condition with 
peers present, two friends communicated with the participant in the 
 scanner over the intercom81 (Fig. 6). Adults aged 24–29 exhibited 

higher activity in lateral PFC than adolescents aged 14–18 or younger 
adults aged 19–22 when they had to make critical decisions in the 
driving game, both when alone and when peers were present. Relative 
to both groups of adults, adolescents exhibited higher BOLD signal in 
the ventral striatum and OFC during the driving decisions with peers 
present compared to when they were alone.

One factor that has thus far been overlooked in explanations of 
adolescent risk-taking in the presence of peers is the possibility that a 
developing ‘mentalizing’ system differently modulates adolescent and 
adult decisions made in social contexts. Mentalizing is defined as the 
ability to attribute mental states to predict others’ behavior, and recent 
studies have shown that this cognitive process undergoes development 
throughout adolescence. Until recently, it was generally assumed that 
mentalizing was fully developed by middle childhood and as a result 
there were few paradigms suitable for older children or adolescents. 
However, paradigms have since been developed to test some aspect of 
mentalizing in the absence of ceiling effects, even in adults. Using one 
such paradigm, female participants aged 7–28 years were instructed 
to move objects in a set of shelves as instructed by a ‘director’ charac-
ter82. The director could see objects in only some of the shelves, and 
therefore correct interpretation of the director’s instructions required 
participants to take into account the director’s visual perspective to 
interpret which object the director intended them to move. The ability 
to account for someone else’s perspective in order to guide decision-
making continued to improve in late adolescence82.
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Figure 6 The stoplight driving game study. (a) Image from the Stoplight 
driving game in which participants are instructed to reach the end of a track 
as quickly as possible. In this study participants played alone or while being 
observed by peers81. (b) Percentage of decisions that were classified as risky, 
for adolescent, young adult and adult participants when playing the Stoplight 
task alone and with a peer audience. (c) Region of the ventral striatum that 
exhibited an age × social condition interaction. (d) Plot of activity in the 
ventral striatum in the three age groups in the ‘alone’ and ‘peers present’ 
conditions. Reprinted from ref. 81 with permisson. 

Figure 7 A qualitative meta-analysis of the region of dmPFC that 
consistently shows decreased activity during mentalizing tasks between late 
childhood and adulthood. This meta-analysis shows voxels in mPFC (yellow) 
that are within 10 mm of the peak voxel found to have a significant negative 
relationship with age in three or more of eight published developmental fMRI 
studies of social cognition86–88,90,97–100. Meta-analysis was performed using 
Neurosynth software (http://www.neurosynth.org/).
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Several developmental fMRI studies have pointed to an anterior-
to-posterior shift of activity within the mentalizing network, which 
includes dorsomedial PFC (dmPFC), posterior superior temporal 
sulcus (pSTS), temporoparietal junction and anterior temporal cor-
tex83, during adolescence. The dmPFC BOLD signal observed during 
social cognition tasks generally decreases between early adolescence 
and adulthood, whereas activity in posterior mentalizing regions 
increases84 (Fig. 7). For example, when adolescents and adults were 
inferring the communicative intent of a speaker, the dmPFC was more 
active in adolescents than in adults, whereas adults relied more than 
adolescents on the fusiform gyrus85. When adolescents or adults were 
thinking about intentions, the dmPFC was more active in adolescents 
than in adults, whereas the right pSTS exhibited the opposite develop-
mental pattern86. In a social emotion paradigm, adolescents exhibited 
higher activity in dmPFC compared with adults, who exhibited higher 
activity in pSTS at the temporoparietal junction, when thinking about 
guilt and embarrassment87.

Behavioral studies have shown that the tendency to use mental 
state information strategically to win money in economic games 
continues to develop during adolescence. The tendency to make a 
generous offer in a modified ultimatum game was increasingly modu-
lated during adolescence by the perceived power of one’s co-player to 
punish a selfish offer88. A developmental fMRI study used the trust 
game to investigate the development of reciprocity. Participants were 
given a sum of money by another player that they could either divide 
fairly between themselves and the other player (reciprocate) or keep 
mostly for themselves (defect)89. There was an age-related decrease in 
dmPFC activity during reciprocal choices during adolescence. Thus, 
the mentalizing system continues to develop during adolescence, and 
this appears to influence the decisions adolescents make during eco-
nomics games.

Considerations for future research
This is a relatively young field, and many questions remain to be 
answered. The distinction between hot and cold decision-making is 
admittedly rather simplistic, and the definition of when a context is 
hot versus cold is not entirely clear. There are likely to be individual-
to-individual and developmental-stage differences in the level of 
emotion or arousal evoked by different contexts, which may in turn 
differentially affect decision-making. In addition, inconsistencies are 
emerging in developmental fMRI of impulse control and decision-
making90. For example, different studies investigating similar cogni-
tive processes report different directions of BOLD signal change with 
age. Possible explanations, requiring further investigation, include 
the following. (i) The age range considered to be ‘adolescence’ is  
not always consistent between studies. For example, in some studies 
the adult group is aged around 18–22 years, whereas in other studies 
this group is considered late adolescence91. (ii) There is currently 
little understanding of how gender, differences among individuals, 
hormonal changes at puberty, culture and the environment influence 
brain development. (iii) The cellular basis of the BOLD signal and the 
possibility that neurovascular coupling might change with age are 
critical issues92. Neurovascular coupling might develop differently in 
different brain regions, and this will influence the direction of BOLD 
signal change observed across age. How developmental changes in 
BOLD signal are related to underlying changes in neurophysiology, 
including synaptic and vascular development, and in cognitive strat-
egy or motivation, is currently unclear. (iv) How well decision-making 
paradigms designed for adults (such as the IGT) and their associated 
monetary rewards generalize to adolescents needs to be considered, 
as money has different inherent value at different ages.

Conclusion
Although many components of human decision-making have been 
identified, it is still a challenging prospect to weld them into a single 
theory of decision-making that convincingly combines economic and 
psychological, including social and emotional, factors. That being the 
case, it is even more difficult to ensure that the neural computations 
and system interactions governing such complexity can be rigorously 
defined and disentangled. Studying the development of such neural 
networks in the context of decision-making cognition is a promising 
strategy for this purpose, as it appears likely that the different com-
ponents of decision-making ‘mature’ at different rates and hence may 
be uncoupled in the adolescent brain.

We have reviewed evidence from empirical studies that adolescents 
are more likely than children and adults to make risky decisions in 
‘hot’ contexts, where emotions are at stake or peers are present and 
social cognition is involved. The peak in risk-taking during adoles-
cence might, at least in part, be due to asymmetrical functional devel-
opment of the dopaminergic reward system (including the ventral 
striatum), which is hyper-responsive to reward in adolescence, and 
the prefrontal systems implicated in impulse and inhibitory control, 
which develop more gradually over childhood and adolescence67. 
We suggest that the developing social brain also needs to be taken 
into account because mentalizing additionally modulates decision- 
making, especially when adolescents are in social contexts.

Many adult psychiatric disorders have developmental origins93, 
possibly in neural systems governing decision-making. Vulnerability 
to addiction, depression, anxiety and psychosis in adulthood could 
potentially be detected via the behavioral and neural changes occur-
ring during adolescence. Longitudinal studies of adolescents that use 
structural and functional neuroimaging, as well as neuropsychological 
assessment, to predict psychopathology, may eventually prospectively 
provide markers for risk of psychiatric disturbance94, which could 
lead to interventions that prevent such disorders, with considerable 
benefit to society.
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